Some problems we face when dealing with data regularly.
The issue: Many fundamental data processing functions exist in Base R and beyond. Sometimes they can be inconsistent or unnecessarily complex. Especially when dealing with non-standard dataframes. The result is code that is confusing and doesn’t flow i.e. nested functions
Tidyverse is most importantly a philosophy for data analysis that more often then not makes wrangling data easier. The tidyverse community have built what they describe as an opinionated group of packages. These packages readily talk to one another.
You can read their manifesto to get a better understanding of the tidy ethos.
Other tools have now been made for the tidy community. This community also overlaps with bioconductor. But the packages above are the linchpins that hold it together.
We already have a course online for plotting, including ggplot.
First step lets load in the data we are using today
## # A tibble: 6 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3
## 2 35035 Sockeye salmon juvenile 121 NA
## 3 35036 Sockeye salmon juvenile 112 NA
## 4 35037 Steelhead juvenile 220 42.7
## 5 35038 Steelhead juvenile 152 NA
## 6 35033 Chinook salmon mixed age juvenile 444 62.1
## # A tibble: 6 x 5
## salmon_id common_name age_classbylength variable value
## <dbl> <chr> <chr> <fct> <dbl>
## 1 35032 Chinook salmon yearling length_mm 147
## 2 35032 Chinook salmon yearling IGF1_ng_ml 41.3
## 3 35033 Chinook salmon mixed age juvenile length_mm 444
## 4 35033 Chinook salmon mixed age juvenile IGF1_ng_ml 62.1
## 5 35034 Sockeye salmon juvenile length_mm 139
## 6 35034 Sockeye salmon juvenile IGF1_ng_ml NA
## # A tibble: 6 x 5
## salmon_id common_name age_classbylength variable value
## <dbl> <chr> <chr> <fct> <dbl>
## 1 35032 Chinook salmon yearling length_mm 147
## 2 35033 Chinook salmon mixed age juvenile length_mm 444
## 3 35034 Sockeye salmon juvenile length_mm 139
## 4 35035 Sockeye salmon juvenile length_mm 121
## 5 35036 Sockeye salmon juvenile length_mm 112
## 6 35037 Steelhead juvenile length_mm 220
## # A tibble: 6 x 5
## salmon_id common_name age_classbylength variable value
## <dbl> <chr> <chr> <fct> <dbl>
## 1 35032 Chinook salmon yearling IGF1_ng_ml 41.3
## 2 35033 Chinook salmon mixed age juvenile IGF1_ng_ml 62.1
## 3 35034 Sockeye salmon juvenile IGF1_ng_ml NA
## 4 35035 Sockeye salmon juvenile IGF1_ng_ml NA
## 5 35036 Sockeye salmon juvenile IGF1_ng_ml NA
## 6 35037 Steelhead juvenile IGF1_ng_ml 42.7
A tidy dataset is a data frame (or table) for which the following are true:
Our first dataframe is tidy
Consistent dataframe layouts help to ensure that all values are present and that relationships between data points are clear.
R is a vectorized programming language. R builds data frames from vectors, and R works best when its operation are vectorized. Tidy data utilizes of both of these aspects of R.
=> Precise and Fast
This package contains a variety of tools to access and manipulate dataframes.
They have a common rationale:
dplyr
Select allows you to make a vector from a specific variable
## # A tibble: 97 x 1
## common_name
## <chr>
## 1 Chinook salmon
## 2 Sockeye salmon
## 3 Sockeye salmon
## 4 Steelhead
## 5 Steelhead
## 6 Chinook salmon
## 7 Sockeye salmon
## 8 Steelhead
## 9 Steelhead
## 10 Steelhead
## # … with 87 more rows
Select allows you to make a dataframe from several variables
# Select two variables (age_classbylength and common_name)
select(df1, age_classbylength, common_name)
## # A tibble: 97 x 2
## age_classbylength common_name
## <chr> <chr>
## 1 yearling Chinook salmon
## 2 juvenile Sockeye salmon
## 3 juvenile Sockeye salmon
## 4 juvenile Steelhead
## 5 juvenile Steelhead
## 6 mixed age juvenile Chinook salmon
## 7 juvenile Sockeye salmon
## 8 juvenile Steelhead
## 9 juvenile Steelhead
## 10 juvenile Steelhead
## # … with 87 more rows
Select allows you to make a dataframe excluding a variable
## # A tibble: 97 x 4
## salmon_id common_name age_classbylength IGF1_ng_ml
## <dbl> <chr> <chr> <dbl>
## 1 35032 Chinook salmon yearling 41.3
## 2 35035 Sockeye salmon juvenile NA
## 3 35036 Sockeye salmon juvenile NA
## 4 35037 Steelhead juvenile 42.7
## 5 35038 Steelhead juvenile NA
## 6 35033 Chinook salmon mixed age juvenile 62.1
## 7 35034 Sockeye salmon juvenile NA
## 8 35048 Steelhead juvenile 24.2
## 9 35049 Steelhead juvenile NA
## 10 35050 Steelhead juvenile 63.5
## # … with 87 more rows
Select allows you to make a dataframe from a range of variables
# Select all a range of contiguous varibles (common_name:length_mm)
select(df1, common_name:length_mm)
## # A tibble: 97 x 3
## common_name age_classbylength length_mm
## <chr> <chr> <dbl>
## 1 Chinook salmon yearling 147
## 2 Sockeye salmon juvenile 121
## 3 Sockeye salmon juvenile 112
## 4 Steelhead juvenile 220
## 5 Steelhead juvenile 152
## 6 Chinook salmon mixed age juvenile 444
## 7 Sockeye salmon juvenile 139
## 8 Steelhead juvenile 288
## 9 Steelhead juvenile 190
## 10 Steelhead juvenile 283
## # … with 87 more rows
Filter allows you to access observations based on a criteria
# Filter all observation where the variable common_name is Sockeye salmon
filter(df1, common_name == 'Sockeye salmon')
## # A tibble: 11 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35035 Sockeye salmon juvenile 121 NA
## 2 35036 Sockeye salmon juvenile 112 NA
## 3 35034 Sockeye salmon juvenile 139 NA
## 4 35144 Sockeye salmon juvenile 140 NA
## 5 35147 Sockeye salmon juvenile 115 NA
## 6 35096 Sockeye salmon juvenile 115 NA
## 7 35097 Sockeye salmon juvenile 110 NA
## 8 35098 Sockeye salmon juvenile 112 NA
## 9 35099 Sockeye salmon juvenile 111 NA
## 10 35100 Sockeye salmon juvenile 118 NA
## 11 35119 Sockeye salmon juvenile 122 NA
Filter allows you to access observations based on several criteria
# Filter all observations where the variable common_name is either Sockeye salmon or Chinook Salmon
filter(df1, common_name %in% c('Sockeye salmon', 'Chinook salmon'))
## # A tibble: 57 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3
## 2 35035 Sockeye salmon juvenile 121 NA
## 3 35036 Sockeye salmon juvenile 112 NA
## 4 35033 Chinook salmon mixed age juvenile 444 62.1
## 5 35034 Sockeye salmon juvenile 139 NA
## 6 35142 Chinook salmon yearling 149 66.5
## 7 35143 Chinook salmon yearling 204 80.9
## 8 35144 Sockeye salmon juvenile 140 NA
## 9 35145 Chinook salmon yearling 130 23.4
## 10 35146 Chinook salmon mixed age juvenile 422 101.
## # … with 47 more rows
Filter allows you to access observations based on specific strings
# Filter all observations where the variable common_name ends with 'salmon'. To do this we use stringr function str_ends recognise strings that end with 'salmon'.
filter(df1, str_ends(common_name, 'salmon'))
## # A tibble: 59 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3
## 2 35035 Sockeye salmon juvenile 121 NA
## 3 35036 Sockeye salmon juvenile 112 NA
## 4 35033 Chinook salmon mixed age juvenile 444 62.1
## 5 35034 Sockeye salmon juvenile 139 NA
## 6 35142 Chinook salmon yearling 149 66.5
## 7 35143 Chinook salmon yearling 204 80.9
## 8 35144 Sockeye salmon juvenile 140 NA
## 9 35145 Chinook salmon yearling 130 23.4
## 10 35146 Chinook salmon mixed age juvenile 422 101.
## # … with 49 more rows
Filter allows you to access observations based on operators
# Filter all observations where the variable length_mm is greater than 200 or less than 120
filter(df1, length_mm > 200 | length_mm < 120)
## # A tibble: 36 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35036 Sockeye salmon juvenile 112 NA
## 2 35037 Steelhead juvenile 220 42.7
## 3 35033 Chinook salmon mixed age juvenile 444 62.1
## 4 35048 Steelhead juvenile 288 24.2
## 5 35050 Steelhead juvenile 283 63.5
## 6 35051 Steelhead juvenile 279 61.2
## 7 35052 Steelhead juvenile 235 30.6
## 8 35053 Steelhead juvenile 230 49.4
## 9 35056 Steelhead juvenile 208 57.4
## 10 35057 Steelhead juvenile 240 20.2
## # … with 26 more rows
Exercise on dplyr’s select and filter can be found here
Arrange sorts the dataframe based on a specific variable
## # A tibble: 97 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35095 Chinook salmon subyearling 90 NA
## 2 35097 Sockeye salmon juvenile 110 NA
## 3 35099 Sockeye salmon juvenile 111 NA
## 4 35036 Sockeye salmon juvenile 112 NA
## 5 35098 Sockeye salmon juvenile 112 NA
## 6 35147 Sockeye salmon juvenile 115 NA
## 7 35096 Sockeye salmon juvenile 115 NA
## 8 35100 Sockeye salmon juvenile 118 NA
## 9 35035 Sockeye salmon juvenile 121 NA
## 10 35119 Sockeye salmon juvenile 122 NA
## # … with 87 more rows
Arrange sorts the dataframe based on specific variables
# Arrange the data first based on the variable common_name,
# then secondly based on length_mm in a descending order.
arrange(df1, common_name, desc(length_mm))
## # A tibble: 97 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35033 Chinook salmon mixed age juvenile 444 62.1
## 2 35146 Chinook salmon mixed age juvenile 422 101.
## 3 35110 Chinook salmon mixed age juvenile 275 81.5
## 4 35129 Chinook salmon yearling 225 72.7
## 5 35103 Chinook salmon yearling 216 81.2
## 6 35115 Chinook salmon yearling 215 53.5
## 7 35112 Chinook salmon yearling 205 90.5
## 8 35143 Chinook salmon yearling 204 80.9
## 9 35079 Chinook salmon yearling 199 53.2
## 10 35081 Chinook salmon yearling 196 5.56
## # … with 87 more rows
Mutate creates a new variable based on some form of computation
# A new variable is created based on the calculation of the
# z-score of the variable IGF1_ng_ml using scale()
mutate(df1, scale(IGF1_ng_ml))
## # A tibble: 97 x 6
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml `scale(IGF1_ng_ml)`[,1]
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3 -0.258
## 2 35035 Sockeye salmon juvenile 121 NA NA
## 3 35036 Sockeye salmon juvenile 112 NA NA
## 4 35037 Steelhead juvenile 220 42.7 -0.191
## 5 35038 Steelhead juvenile 152 NA NA
## 6 35033 Chinook salmon mixed age juvenile 444 62.1 0.704
## 7 35034 Sockeye salmon juvenile 139 NA NA
## 8 35048 Steelhead juvenile 288 24.2 -1.04
## 9 35049 Steelhead juvenile 190 NA NA
## 10 35050 Steelhead juvenile 283 63.5 0.766
## # … with 87 more rows
Mutate creates a named variable based on some form of computation
# A new variable is created called IGFngml_zscore, based on the
# calculation of the z-score of the variable IGF1_ng_ml using scale()
mutate(df1, IGFngml_zscore = scale(IGF1_ng_ml))
## # A tibble: 97 x 6
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml IGFngml_zscore[,1]
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3 -0.258
## 2 35035 Sockeye salmon juvenile 121 NA NA
## 3 35036 Sockeye salmon juvenile 112 NA NA
## 4 35037 Steelhead juvenile 220 42.7 -0.191
## 5 35038 Steelhead juvenile 152 NA NA
## 6 35033 Chinook salmon mixed age juvenile 444 62.1 0.704
## 7 35034 Sockeye salmon juvenile 139 NA NA
## 8 35048 Steelhead juvenile 288 24.2 -1.04
## 9 35049 Steelhead juvenile 190 NA NA
## 10 35050 Steelhead juvenile 283 63.5 0.766
## # … with 87 more rows
Exercise on dplyr’s arrange and mutate can be found here
Summarize applies aggregating or summary function to a group i.e. counting
# First we define the common_name as a group.
df1_byname <- group_by(df1, common_name)
# Summarise is used to count over the grouped common_names
summarise(df1_byname, count = n())
## # A tibble: 4 x 2
## common_name count
## <chr> <int>
## 1 Chinook salmon 46
## 2 Coho salmon 2
## 3 Sockeye salmon 11
## 4 Steelhead 38
Summarize applies aggregating or summary function to a group i.e. means
# Summarise is used to calculate mean IGF1_ng_ml over the
# grouped common_names
summarise(df1_byname, IGF1_ng_ml_ave = mean(IGF1_ng_ml, na.rm = T))
## # A tibble: 4 x 2
## common_name IGF1_ng_ml_ave
## <chr> <dbl>
## 1 Chinook salmon 46.8
## 2 Coho salmon 73.6
## 3 Sockeye salmon NaN
## 4 Steelhead 46.1
Grouping can also help filter within groups
# Filter observations with the 2 smallest length_mm for each grouped common_names
filter(df1_byname, rank(length_mm) <= 2)
## # A tibble: 8 x 5
## # Groups: common_name [4]
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35038 Steelhead juvenile 152 NA
## 2 35055 Steelhead juvenile 123 55.7
## 3 35145 Chinook salmon yearling 130 23.4
## 4 35085 Coho salmon yearling 140 NA
## 5 35087 Coho salmon yearling 164 73.6
## 6 35095 Chinook salmon subyearling 90 NA
## 7 35097 Sockeye salmon juvenile 110 NA
## 8 35099 Sockeye salmon juvenile 111 NA
Grouping can also help filter within groups
## # A tibble: 95 x 5
## # Groups: common_name [3]
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3
## 2 35035 Sockeye salmon juvenile 121 NA
## 3 35036 Sockeye salmon juvenile 112 NA
## 4 35037 Steelhead juvenile 220 42.7
## 5 35038 Steelhead juvenile 152 NA
## 6 35033 Chinook salmon mixed age juvenile 444 62.1
## 7 35034 Sockeye salmon juvenile 139 NA
## 8 35048 Steelhead juvenile 288 24.2
## 9 35049 Steelhead juvenile 190 NA
## 10 35050 Steelhead juvenile 283 63.5
## # … with 85 more rows
Grouping creates a new variable based on some form of computation within the group
# A new variable is created using z-score within the grouped common_names
mutate(df1_byname, IGFngml_zscore = scale(IGF1_ng_ml))
## # A tibble: 97 x 6
## # Groups: common_name [4]
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml IGFngml_zscore
## <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3 -0.236
## 2 35035 Sockeye salmon juvenile 121 NA NA
## 3 35036 Sockeye salmon juvenile 112 NA NA
## 4 35037 Steelhead juvenile 220 42.7 -0.176
## 5 35038 Steelhead juvenile 152 NA NA
## 6 35033 Chinook salmon mixed age juvenile 444 62.1 0.652
## 7 35034 Sockeye salmon juvenile 139 NA NA
## 8 35048 Steelhead juvenile 288 24.2 -1.12
## 9 35049 Steelhead juvenile 190 NA NA
## 10 35050 Steelhead juvenile 283 63.5 0.890
## # … with 87 more rows
Piping was allows you to pass the result from one expression directly into another.
magrittR package developed the %>% pipe which is integral to the tidy way of formatting code
The pattern is similar but now follows a specific logical flow:
dplyr
# Without pipe
df1_byname <- group_by(df1, common_name)
summarise(df1_byname, IGF1_ng_ml_ave = mean(IGF1_ng_ml, na.rm=T))
## # A tibble: 4 x 2
## common_name IGF1_ng_ml_ave
## <chr> <dbl>
## 1 Chinook salmon 46.8
## 2 Coho salmon 73.6
## 3 Sockeye salmon NaN
## 4 Steelhead 46.1
## # A tibble: 4 x 2
## common_name IGF1_ng_ml_ave
## <chr> <dbl>
## 1 Chinook salmon 46.8
## 2 Coho salmon 73.6
## 3 Sockeye salmon NaN
## 4 Steelhead 46.1
# (1) Group by common_name
# (2) Filter to all those that have length bigger then 200
# (3) Summarise is used to calculate mean IGF1_ng_ml over the grouped
# common_names for these larger fish
df1 %>%
group_by(common_name) %>%
filter(length_mm > 200) %>%
summarise(IGF1_ng_ml_ave = mean(IGF1_ng_ml, na.rm = T))
## # A tibble: 2 x 2
## common_name IGF1_ng_ml_ave
## <chr> <dbl>
## 1 Chinook salmon 77.9
## 2 Steelhead 45.3
# (1) Create new variable that is discrete label depending on size of the fish
# (2) Group by common_name and size
# (3) Summarise is used to calculate mean IGF1_ng_ml over the grouped
# common_names and sizes
df1 %>%
mutate(size = if_else(length_mm > 200, 'big_fish', 'small_fish')) %>%
group_by(common_name, size) %>%
summarise(IGF1_ng_ml_ave = mean(IGF1_ng_ml, na.rm = T))
## # A tibble: 6 x 3
## # Groups: common_name [4]
## common_name size IGF1_ng_ml_ave
## <chr> <chr> <dbl>
## 1 Chinook salmon big_fish 77.9
## 2 Chinook salmon small_fish 39.5
## 3 Coho salmon small_fish 73.6
## 4 Sockeye salmon small_fish NaN
## 5 Steelhead big_fish 45.3
## 6 Steelhead small_fish 47.3
# (1) Create new variable that is discrete label depending on size of the fish
# (2) Group by common_name and size
# (3) Summarise is used to calculate mean IGF1_ng_ml over the grouped
# common_names and sizes
# (4) Filter out Coho and Sockeye salmon
df1 %>%
mutate(size = if_else(length_mm > 200, 'big_fish', 'small_fish')) %>%
group_by(common_name, size) %>%
summarise(IGF1_ng_ml_ave = mean(IGF1_ng_ml, na.rm = T)) %>%
filter(common_name != 'Coho salmon') %>%
filter(common_name !='Sockeye salmon')
## # A tibble: 4 x 3
## # Groups: common_name [2]
## common_name size IGF1_ng_ml_ave
## <chr> <chr> <dbl>
## 1 Chinook salmon big_fish 77.9
## 2 Chinook salmon small_fish 39.5
## 3 Steelhead big_fish 45.3
## 4 Steelhead small_fish 47.3
p <- df1 %>% mutate(size=if_else(length_mm>200, 'big_fish', 'small_fish')) %>%
group_by(common_name, size) %>%
summarize(IGF1_ng_ml_ave=mean(IGF1_ng_ml, na.rm=T)) %>%
filter(common_name != 'Coho salmon') %>%
filter(common_name != 'Sockeye salmon') %>%
ggplot(aes(x = common_name, y = IGF1_ng_ml_ave, group = size, fill = size)) +
geom_bar(stat = "identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 90)) +
scale_fill_brewer(palette = "Paired")
So we blasted through what being tidy can give you. Now lets start from the beginning and tidy some data. First step is to read in data.
readr:
untidy_counts_base <- read.csv("dataset/hemato_rnaseq_counts.csv")
# Base will print out everything
untidy_counts_base
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## 11 361 0 1 0 0
## 12 362 3 1 15 0
## 13 363 14 6 4 1
## 14 364 7 0 1 0
## 15 366 6 0 1 0
## 16 367 42 0 51 1
## 17 368 28 0 24 0
## 18 369 1204 1034 833 478
## 19 372 2829 1864 2741 771
## 20 373 179 728 148 795
## 21 374 76 5 138 2
## 22 375 4428 6697 4970 4328
## 23 377 3170 314 2576 11
## 24 378 1839 4845 1767 2975
## 25 379 178 1 181 0
## 26 381 1617 574 1159 339
## 27 382 2874 2265 1746 1668
## 28 383 63 1632 40 721
## 29 384 148 10977 118 94
## 30 387 8899 2457 7405 1228
## 31 388 12598 171 5090 70
## 32 389 2709 193 2313 5
## 33 390 1004 0 395 0
## 34 391 1038 577 1176 164
## 35 392 1527 304 786 71
## 36 393 2949 138 1540 3
## 37 394 1525 464 1062 134
## 38 395 348 67 123 0
## 39 396 6503 702 4723 169
## 40 397 12997 410 11265 38
## 41 398 0 0 0 0
## 42 399 223 11 422 2
## 43 400 1188 147 806 56
## 44 401 0 0 0 0
## 45 402 504 218 496 80
## 46 403 289 25 166 4
## 47 405 1481 824 1004 812
## 48 406 295 175 87 35
## 49 407 4 1 2 1
## 50 408 2451 111 1523 6
## 51 409 2480 1819 1356 226
## 52 410 433 197 215 77
## 53 411 829 217 441 131
## 54 412 312 45 138 17
## 55 414 516 15 396 9
## 56 415 20 0 13 0
## 57 416 2 1 4 0
## 58 417 0 0 0 0
## 59 419 6 5 2 7
## 60 420 141 1136 94 1217
## 61 421 213 255 93 208
## 62 427 4699 11889 1729 926
## 63 429 0 0 2 0
## 64 430 34 13 22 0
## 65 432 63 0 55 1
## 66 433 38 0 26 0
## 67 434 1 1 2 0
## 68 435 408 151 284 34
## 69 440 157 2520 111 535
## 70 443 5 0 4 0
## 71 444 1583 151 747 14
## 72 445 116 15 90 1
## 73 460 34 0 68 0
## 74 462 70 0 31 1
## 75 463 1244 118 492 71
## 76 466 538 480 393 218
## 77 467 2506 402 2130 18
## 78 468 7991 6132 5307 1883
## 79 471 1272 771 1392 53
## 80 472 1389 628 739 138
## 81 473 4173 783 1901 776
## 82 474 0 0 0 0
## 83 475 284 83 467 34
## 84 476 4952 3453 4202 1416
## 85 477 13 3 26 2
## 86 478 78 121 67 0
## 87 479 17 0 4 0
## 88 480 9 5 11 1
## 89 481 1937 18 1017 34
## 90 482 157 1392 75 1660
## 91 483 1075 1454 1789 1141
## 92 486 47 0 18 0
## 93 487 29 33 19 3
## 94 488 4529 1118 2925 269
## 95 489 3465 153 3188 8
## 96 490 1610 1263 913 665
## 97 491 12 1 4 0
## 98 492 4 0 6 0
## 99 493 5011 3585 3053 743
## 100 495 0 0 0 0
## Parsed with column specification:
## cols(
## ENTREZ = col_double(),
## CD34_1 = col_double(),
## ORTHO_1 = col_double(),
## CD34_2 = col_double(),
## ORTHO_2 = col_double()
## )
## # A tibble: 100 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## # … with 90 more rows
# Tibbles carry and display extra information.
# While reading in it is easy to specify data type.
untidy_counts <- read_csv("dataset/hemato_rnaseq_counts.csv", col_types = cols(
ENTREZ = col_character(),
CD34_1 = col_integer(),
ORTHO_1 = col_integer(),
CD34_2 = col_integer(),
ORTHO_2 = col_integer()
))
untidy_counts
## # A tibble: 100 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <chr> <int> <int> <int> <int>
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## # … with 90 more rows
## # A tibble: 100 x 1
## ENTREZ
## <chr>
## 1 350
## 2 351
## 3 353
## 4 354
## 5 355
## 6 356
## 7 357
## 8 358
## 9 359
## 10 360
## # … with 90 more rows
## # A tibble: 1 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <chr> <int> <int> <int> <int>
## 1 350 204 0 103 0
# Can also not specify which dimension you pull from.
# This will default to grabbing the column
untidy_counts[1]
## # A tibble: 100 x 1
## ENTREZ
## <chr>
## 1 350
## 2 351
## 3 353
## 4 354
## 5 355
## 6 356
## 7 357
## 8 358
## 9 359
## 10 360
## # … with 90 more rows
# All the prior outputs have been outputting another tibble.
# If double brackets are used a vector is returned
untidy_counts[[1]]
## [1] "350" "351" "353" "354" "355" "356" "357" "358" "359" "360" "361" "362" "363" "364" "366"
## [16] "367" "368" "369" "372" "373" "374" "375" "377" "378" "379" "381" "382" "383" "384" "387"
## [31] "388" "389" "390" "391" "392" "393" "394" "395" "396" "397" "398" "399" "400" "401" "402"
## [46] "403" "405" "406" "407" "408" "409" "410" "411" "412" "414" "415" "416" "417" "419" "420"
## [61] "421" "427" "429" "430" "432" "433" "434" "435" "440" "443" "444" "445" "460" "462" "463"
## [76] "466" "467" "468" "471" "472" "473" "474" "475" "476" "477" "478" "479" "480" "481" "482"
## [91] "483" "486" "487" "488" "489" "490" "491" "492" "493" "495"
## [1] "350" "351" "353" "354" "355" "356" "357" "358" "359" "360" "361" "362" "363" "364" "366"
## [16] "367" "368" "369" "372" "373" "374" "375" "377" "378" "379" "381" "382" "383" "384" "387"
## [31] "388" "389" "390" "391" "392" "393" "394" "395" "396" "397" "398" "399" "400" "401" "402"
## [46] "403" "405" "406" "407" "408" "409" "410" "411" "412" "414" "415" "416" "417" "419" "420"
## [61] "421" "427" "429" "430" "432" "433" "434" "435" "440" "443" "444" "445" "460" "462" "463"
## [76] "466" "467" "468" "471" "472" "473" "474" "475" "476" "477" "478" "479" "480" "481" "482"
## [91] "483" "486" "487" "488" "489" "490" "491" "492" "493" "495"
Exercise on readr can be found here
## # A tibble: 100 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <int> <int> <int> <int> <int>
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## # … with 90 more rows
# Once it is a tibble it is straight forward to modify the datatype
untidy_counts_base <- as_tibble(untidy_counts_base) %>%
mutate_at(vars(ENTREZ), as.character)
untidy_counts_base
## # A tibble: 100 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <chr> <int> <int> <int> <int>
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## # … with 90 more rows
# Some tools are not tibble friendly. Calling as.data.frame is
# sufficient to convert it back to a base data frame
as.data.frame(untidy_counts_base) %>% head(n=12)
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## 11 361 0 1 0 0
## 12 362 3 1 15 0
We will make our own tibble now from scratch, using some metadata that will be useful later
# Lets load in some packages
library(org.Hs.eg.db)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
# Lets use the ENTREZ ID as a key
keys <- untidy_counts$ENTREZ
# We can use the ENTREZ ID to look up Gene Symbol
symbols <- select(org.Hs.eg.db, keys = keys,columns = "SYMBOL", keytype = "ENTREZID")
# We can use the ENTREZ ID to look up the chormosome the gene resides on
chrs <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, keys = keys, columns = "TXCHROM", keytype = "GENEID")
# We can use the ENTREZ ID to get a list of genes with grange of their exons
geneExons <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene,by = "gene")[keys]
# We will then use an apply to get the transcript length from each gene in the
# list. The transcript length is calculated by first flattening overlapping
# exons with reduce(), then calculating the length of each exon with width(),
# then summing upthe total exon length to get our transcript length.
txsLength <- sapply(geneExons, function(x){ x %>%
GenomicRanges::reduce() %>%
width() %>%
sum() })
# Finally we have all this metadata. Lets put it together into a tibble.
counts_metadata <- tibble(ID = symbols$ENTREZID, SYMBOL = symbols$SYMBOL, CHR = chrs$TXCHROM, LENGTH = txsLength)
## # A tibble: 100 x 4
## ID SYMBOL CHR LENGTH
## <chr> <chr> <chr> <int>
## 1 350 APOH chr17 1201
## 2 351 APP chr21 4480
## 3 353 APRT chr16 807
## 4 354 KLK3 chr19 1906
## 5 355 FAS chr10 6691
## 6 356 FASLG chr1 1859
## 7 357 SHROOM2 chrX 8206
## 8 358 AQP1 chr7 3786
## 9 359 AQP2 chr12 4179
## 10 360 AQP3 chr9 2950
## # … with 90 more rows
What is wrong with the count dataframe from a tidy viewpoint?
Remember. These are the rules:
## # A tibble: 100 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <chr> <int> <int> <int> <int>
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## # … with 90 more rows
What is wrong with the count dataframe from a tidy viewpoint?
Remember, these are the rules:
A single variable with multiple columns
## # A tibble: 100 x 5
## ENTREZ CD34_1 ORTHO_1 CD34_2 ORTHO_2
## <chr> <int> <int> <int> <int>
## 1 350 204 0 103 0
## 2 351 15586 479 10476 39
## 3 353 842 355 1188 86
## 4 354 0 0 0 0
## 5 355 123 291 139 16
## 6 356 1 1 0 0
## 7 357 380 3 177 0
## 8 358 572 2225 597 4051
## 9 359 0 12 1 0
## 10 360 320 502 46 1114
## # … with 90 more rows
When all the content is in the data frame, but it is in the wrong orientation, tidyr has some tools to move the data around quickly and easily:
gather and spread
Gather allows you to collapse single varibles that are spread over multiple columns
# New columns Sample and Counts are created from whole dataframe
tidier_counts <- gather(untidy_counts, key="Sample", value="counts", -ENTREZ)
tidier_counts
## # A tibble: 400 x 3
## ENTREZ Sample counts
## <chr> <chr> <int>
## 1 350 CD34_1 204
## 2 351 CD34_1 15586
## 3 353 CD34_1 842
## 4 354 CD34_1 0
## 5 355 CD34_1 123
## 6 356 CD34_1 1
## 7 357 CD34_1 380
## 8 358 CD34_1 572
## 9 359 CD34_1 0
## 10 360 CD34_1 320
## # … with 390 more rows
Spread allows you to spread single variables over multiple columns
## # A tibble: 100 x 5
## ENTREZ CD34_1 CD34_2 ORTHO_1 ORTHO_2
## <chr> <int> <int> <int> <int>
## 1 350 204 103 0 0
## 2 351 15586 10476 479 39
## 3 353 842 1188 355 86
## 4 354 0 0 0 0
## 5 355 123 139 291 16
## 6 356 1 0 1 0
## 7 357 380 177 3 0
## 8 358 572 597 2225 4051
## 9 359 0 1 12 0
## 10 360 320 46 502 1114
## # … with 90 more rows
Gather and spread are being retired. They are being replaced with pivot_tools.
There is slightly different nomencalture, but they pretty much do the same thing.
Exercise on tidying can be found here
Remember, these are the rules:
## # A tibble: 400 x 3
## ENTREZ Sample counts
## <chr> <chr> <int>
## 1 350 CD34_1 204
## 2 351 CD34_1 15586
## 3 353 CD34_1 842
## 4 354 CD34_1 0
## 5 355 CD34_1 123
## 6 356 CD34_1 1
## 7 357 CD34_1 380
## 8 358 CD34_1 572
## 9 359 CD34_1 0
## 10 360 CD34_1 320
## # … with 390 more rows
Remember, these are the rules:
Multiple variables in a single column
## # A tibble: 400 x 3
## ENTREZ Sample counts
## <chr> <chr> <int>
## 1 350 CD34_1 204
## 2 351 CD34_1 15586
## 3 353 CD34_1 842
## 4 354 CD34_1 0
## 5 355 CD34_1 123
## 6 356 CD34_1 1
## 7 357 CD34_1 380
## 8 358 CD34_1 572
## 9 359 CD34_1 0
## 10 360 CD34_1 320
## # … with 390 more rows
When there are several variables crammed into a single column, tidyr can be used to split single values into several:
separate
# Separate allows you to break a strings in a variable by a separator.
# In this case the cell type and replicate number are broken by underscore
tidier_counts <- separate(tidier_counts, Sample, sep = "_", into=c("CellType","Rep"), remove=TRUE)
tidier_counts
## # A tibble: 400 x 4
## ENTREZ CellType Rep counts
## <chr> <chr> <chr> <int>
## 1 350 CD34 1 204
## 2 351 CD34 1 15586
## 3 353 CD34 1 842
## 4 354 CD34 1 0
## 5 355 CD34 1 123
## 6 356 CD34 1 1
## 7 357 CD34 1 380
## 8 358 CD34 1 572
## 9 359 CD34 1 0
## 10 360 CD34 1 320
## # … with 390 more rows
# Unite can go the other way. This can sometime be useful i.e. if you want a specific sample ID
unite(tidier_counts, Sample, CellType, Rep, remove=FALSE)
## # A tibble: 400 x 5
## ENTREZ Sample CellType Rep counts
## <chr> <chr> <chr> <chr> <int>
## 1 350 CD34_1 CD34 1 204
## 2 351 CD34_1 CD34 1 15586
## 3 353 CD34_1 CD34 1 842
## 4 354 CD34_1 CD34 1 0
## 5 355 CD34_1 CD34 1 123
## 6 356 CD34_1 CD34 1 1
## 7 357 CD34_1 CD34 1 380
## 8 358 CD34_1 CD34 1 572
## 9 359 CD34_1 CD34 1 0
## 10 360 CD34_1 CD34 1 320
## # … with 390 more rows
# Remember you can always pipe everything together into a single expression
tidy_counts <- untidy_counts %>%
gather(key=Sample, value=counts, -ENTREZ) %>%
separate(Sample, sep = "_", into = c("CellType","Rep"), remove=FALSE)
tidy_counts
## # A tibble: 400 x 5
## ENTREZ Sample CellType Rep counts
## <chr> <chr> <chr> <chr> <int>
## 1 350 CD34_1 CD34 1 204
## 2 351 CD34_1 CD34 1 15586
## 3 353 CD34_1 CD34 1 842
## 4 354 CD34_1 CD34 1 0
## 5 355 CD34_1 CD34 1 123
## 6 356 CD34_1 CD34 1 1
## 7 357 CD34_1 CD34 1 380
## 8 358 CD34_1 CD34 1 572
## 9 359 CD34_1 CD34 1 0
## 10 360 CD34_1 CD34 1 320
## # … with 390 more rows
Data frames can be joined on a shared variable a.k.a. a key. We want this key to be unique i.e. ENTREZ ID.
## # A tibble: 400 x 5
## ENTREZ Sample CellType Rep counts
## <chr> <chr> <chr> <chr> <int>
## 1 350 CD34_1 CD34 1 204
## 2 351 CD34_1 CD34 1 15586
## 3 353 CD34_1 CD34 1 842
## 4 354 CD34_1 CD34 1 0
## 5 355 CD34_1 CD34 1 123
## 6 356 CD34_1 CD34 1 1
## 7 357 CD34_1 CD34 1 380
## 8 358 CD34_1 CD34 1 572
## 9 359 CD34_1 CD34 1 0
## 10 360 CD34_1 CD34 1 320
## # … with 390 more rows
## # A tibble: 100 x 4
## ID SYMBOL CHR LENGTH
## <chr> <chr> <chr> <int>
## 1 350 APOH chr17 1201
## 2 351 APP chr21 4480
## 3 353 APRT chr16 807
## 4 354 KLK3 chr19 1906
## 5 355 FAS chr10 6691
## 6 356 FASLG chr1 1859
## 7 357 SHROOM2 chrX 8206
## 8 358 AQP1 chr7 3786
## 9 359 AQP2 chr12 4179
## 10 360 AQP3 chr9 2950
## # … with 90 more rows
## # A tibble: 400 x 8
## ENTREZ Sample CellType Rep counts SYMBOL CHR LENGTH
## <chr> <chr> <chr> <chr> <int> <chr> <chr> <int>
## 1 350 CD34_1 CD34 1 204 APOH chr17 1201
## 2 351 CD34_1 CD34 1 15586 APP chr21 4480
## 3 353 CD34_1 CD34 1 842 APRT chr16 807
## 4 354 CD34_1 CD34 1 0 KLK3 chr19 1906
## 5 355 CD34_1 CD34 1 123 FAS chr10 6691
## 6 356 CD34_1 CD34 1 1 FASLG chr1 1859
## 7 357 CD34_1 CD34 1 380 SHROOM2 chrX 8206
## 8 358 CD34_1 CD34 1 572 AQP1 chr7 3786
## 9 359 CD34_1 CD34 1 0 AQP2 chr12 4179
## 10 360 CD34_1 CD34 1 320 AQP3 chr9 2950
## # … with 390 more rows
Inner Join
Outer Join
# In this pipe I group by gene, summarise the data based on the
# sum of counts, and filter for anything that has a count greater
# than 0.
expressed_genes <- tidy_counts %>%
group_by(ENTREZ) %>%
summarise(count_total=sum(counts)) %>%
filter(count_total>0)
expressed_genes
## # A tibble: 94 x 2
## ENTREZ count_total
## <chr> <int>
## 1 350 307
## 2 351 26580
## 3 353 2471
## 4 355 569
## 5 356 2
## 6 357 560
## 7 358 7445
## 8 359 13
## 9 360 1982
## 10 361 1
## # … with 84 more rows
# Left join shows all genes as my full data frame tidy_counts is
# used as the backbone. The filtered expressed genes is secondary,
# and has missing values (unexpressed genes) which are filled with NA
left_join(tidy_counts, expressed_genes, by = c("ENTREZ" = "ENTREZ"))
## # A tibble: 400 x 6
## ENTREZ Sample CellType Rep counts count_total
## <chr> <chr> <chr> <chr> <int> <int>
## 1 350 CD34_1 CD34 1 204 307
## 2 351 CD34_1 CD34 1 15586 26580
## 3 353 CD34_1 CD34 1 842 2471
## 4 354 CD34_1 CD34 1 0 NA
## 5 355 CD34_1 CD34 1 123 569
## 6 356 CD34_1 CD34 1 1 2
## 7 357 CD34_1 CD34 1 380 560
## 8 358 CD34_1 CD34 1 572 7445
## 9 359 CD34_1 CD34 1 0 13
## 10 360 CD34_1 CD34 1 320 1982
## # … with 390 more rows
# Right join shows only genes that survived filtering as it is using
# the second dataframe as the backbone for the new dataframe.
tidy_counts_expressed <- right_join(tidy_counts, expressed_genes, by = c("ENTREZ" = "ENTREZ"))
tidy_counts_expressed %>% print(n=20)
## # A tibble: 376 x 6
## ENTREZ Sample CellType Rep counts count_total
## <chr> <chr> <chr> <chr> <int> <int>
## 1 350 CD34_1 CD34 1 204 307
## 2 350 ORTHO_1 ORTHO 1 0 307
## 3 350 CD34_2 CD34 2 103 307
## 4 350 ORTHO_2 ORTHO 2 0 307
## 5 351 CD34_1 CD34 1 15586 26580
## 6 351 ORTHO_1 ORTHO 1 479 26580
## 7 351 CD34_2 CD34 2 10476 26580
## 8 351 ORTHO_2 ORTHO 2 39 26580
## 9 353 CD34_1 CD34 1 842 2471
## 10 353 ORTHO_1 ORTHO 1 355 2471
## 11 353 CD34_2 CD34 2 1188 2471
## 12 353 ORTHO_2 ORTHO 2 86 2471
## 13 355 CD34_1 CD34 1 123 569
## 14 355 ORTHO_1 ORTHO 1 291 569
## 15 355 CD34_2 CD34 2 139 569
## 16 355 ORTHO_2 ORTHO 2 16 569
## 17 356 CD34_1 CD34 1 1 2
## 18 356 ORTHO_1 ORTHO 1 1 2
## 19 356 CD34_2 CD34 2 0 2
## 20 356 ORTHO_2 ORTHO 2 0 2
## # … with 356 more rows
Filtering joins
# Semi join only keeps observations in x that are matched in y. y is
# only used as a reference and is not in output
semi_join(tidy_counts, expressed_genes)
## Joining, by = "ENTREZ"
## # A tibble: 376 x 5
## ENTREZ Sample CellType Rep counts
## <chr> <chr> <chr> <chr> <int>
## 1 350 CD34_1 CD34 1 204
## 2 351 CD34_1 CD34 1 15586
## 3 353 CD34_1 CD34 1 842
## 4 355 CD34_1 CD34 1 123
## 5 356 CD34_1 CD34 1 1
## 6 357 CD34_1 CD34 1 380
## 7 358 CD34_1 CD34 1 572
## 8 359 CD34_1 CD34 1 0
## 9 360 CD34_1 CD34 1 320
## 10 361 CD34_1 CD34 1 0
## # … with 366 more rows
# Anti join only keeps observations in x that are not matched in y.
# y is only used as a reference and is not in output
anti_join(tidy_counts, expressed_genes)
## Joining, by = "ENTREZ"
## # A tibble: 24 x 5
## ENTREZ Sample CellType Rep counts
## <chr> <chr> <chr> <chr> <int>
## 1 354 CD34_1 CD34 1 0
## 2 398 CD34_1 CD34 1 0
## 3 401 CD34_1 CD34 1 0
## 4 417 CD34_1 CD34 1 0
## 5 474 CD34_1 CD34 1 0
## 6 495 CD34_1 CD34 1 0
## 7 354 ORTHO_1 ORTHO 1 0
## 8 398 ORTHO_1 ORTHO 1 0
## 9 401 ORTHO_1 ORTHO 1 0
## 10 417 ORTHO_1 ORTHO 1 0
## # … with 14 more rows
You’ve made a lovely new tibble file. Now you need to save it somewhere.
#Theres a wide range of writing options. Can specify the delmiter directly or use a specific function
write_delim(tidy_counts_expressed_norm, '../expressed_genes_output.csv', delim =',')
write_csv(tidy_counts_expressed_norm, '../expressed_genes_output.csv')
A key difference compared to base is that it does not write out row names. Tibbles generally don’t have rownames.
At this point we have covered or touched on the most essential facets of tidy
* ggplot2 – making pretty graphs * readr – reading data into R
* dplyr – manipulating data
* tibble - working with tibbles
* tidyr – miscellaneous tools for tidying data * purrr - iterating over data
* stringr – working with strings
* forcats - working with factors
# Map is the tidy equivalent to apply. Here we take our untidy counts,
# trim of IDs, and then calculate means for each column. By default the
# output is a list
untidy_counts %>%
dplyr::select(-ENTREZ) %>%
map(mean)
## $CD34_1
## [1] 1497.67
##
## $ORTHO_1
## [1] 822.33
##
## $CD34_2
## [1] 1056.85
##
## $ORTHO_2
## [1] 329.05
# Same as the above line, but using map_dbl specifies the outputs is
# going to be a double
untidy_counts %>%
dplyr::select(-ENTREZ) %>%
map_dbl(mean)
## CD34_1 ORTHO_1 CD34_2 ORTHO_2
## 1497.67 822.33 1056.85 329.05
# Summary sometimes also works in this context
tidy_counts %>%
group_by(Sample) %>%
summarize(mean_counts = mean(counts))
## # A tibble: 4 x 2
## Sample mean_counts
## <chr> <dbl>
## 1 CD34_1 1498.
## 2 CD34_2 1057.
## 3 ORTHO_1 822.
## 4 ORTHO_2 329.
# This is an alternative method for doing this with an tidied frame
tidy_counts %>%
split(.$Sample) %>%
map_dbl(~mean(.$counts))
## CD34_1 CD34_2 ORTHO_1 ORTHO_2
## 1497.67 1056.85 822.33 329.05
# pmap is a map variant for dealing with multiple inputs. This can be
# used to apply a function on a row by row basis
list(untidy_counts$ORTHO_1, untidy_counts$ORTHO_2) %>%
pmap_dbl(mean)
## [1] 0 479 355 0 291 1 3 2225 12 502 1 1 6 0 0
## [16] 0 0 1034 1864 728 5 6697 314 4845 1 574 2265 1632 10977 2457
## [31] 171 193 0 577 304 138 464 67 702 410 0 11 147 0 218
## [46] 25 824 175 1 111 1819 197 217 45 15 0 1 0 5 1136
## [61] 255 11889 0 13 0 0 1 151 2520 0 151 15 0 0 118
## [76] 480 402 6132 771 628 783 0 83 3453 3 121 0 5 18 1392
## [91] 1454 0 33 1118 153 1263 1 0 3585 0
Dataframes can be be simplified by making them more complex.
Each value within a tibble can contian more abstract information then just numbers and chracters. Instead you can store another tibble, or object.
# Nest all the data by sample
tidy_counts_nest <- tidy_counts_expressed_norm %>%
group_by(Sample) %>%
nest()
# Looking at tibble it is a new datatype that appears simplified
tidy_counts_nest
## # A tibble: 4 x 2
## # Groups: Sample [4]
## Sample data
## <chr> <list<df[,10]>>
## 1 CD34_1 [94 × 10]
## 2 ORTHO_1 [94 × 10]
## 3 CD34_2 [94 × 10]
## 4 ORTHO_2 [94 × 10]
## [1] "vctrs_list_of" "vctrs_vctr" "oldClass"
## # A tibble: 94 x 10
## ENTREZ CellType Rep counts count_total CPM SYMBOL CHR LENGTH TPM
## <chr> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <dbl>
## 1 350 CD34 1 204 307 1362. APOH chr17 1201 3069.
## 2 351 CD34 1 15586 26580 104068. APP chr21 4480 62851.
## 3 353 CD34 1 842 2471 5622. APRT chr16 807 18849.
## 4 355 CD34 1 123 569 821. FAS chr10 6691 332.
## 5 356 CD34 1 1 2 6.68 FASLG chr1 1859 9.72
## 6 357 CD34 1 380 560 2537. SHROOM2 chrX 8206 837.
## 7 358 CD34 1 572 7445 3819. AQP1 chr7 3786 2729.
## 8 359 CD34 1 0 13 0 AQP2 chr12 4179 0
## 9 360 CD34 1 320 1982 2137. AQP3 chr9 2950 1960.
## 10 361 CD34 1 0 1 0 AQP4 chr18 5217 0
## # … with 84 more rows
# Map can be used to apply functions across nested dataframes.
# Here we calculate a linear model. This is also saved in the tibble.
tidy_counts_nest <- tidy_counts_nest %>%
mutate(my_model = map(data, ~lm(CPM ~ TPM, data = .)))
tidy_counts_nest
## # A tibble: 4 x 3
## # Groups: Sample [4]
## Sample data my_model
## <chr> <list<df[,10]>> <list>
## 1 CD34_1 [94 × 10] <lm>
## 2 ORTHO_1 [94 × 10] <lm>
## 3 CD34_2 [94 × 10] <lm>
## 4 ORTHO_2 [94 × 10] <lm>
##
## Call:
## lm(formula = CPM ~ TPM, data = .)
##
## Coefficients:
## (Intercept) TPM
## 3864.9798 0.6367
# Tidy also has the ability to "tidy" up outputs from common statistical
# packages, using broom.
library(broom)
tidy_counts_nest <- tidy_counts_nest %>%
mutate(my_tidy_model = map(my_model, broom::tidy))
tidy_counts_nest
## # A tibble: 4 x 4
## # Groups: Sample [4]
## Sample data my_model my_tidy_model
## <chr> <list<df[,10]>> <list> <list>
## 1 CD34_1 [94 × 10] <lm> <tibble [2 × 5]>
## 2 ORTHO_1 [94 × 10] <lm> <tibble [2 × 5]>
## 3 CD34_2 [94 × 10] <lm> <tibble [2 × 5]>
## 4 ORTHO_2 [94 × 10] <lm> <tibble [2 × 5]>
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 3865. 1101. 3.51 6.94e- 4
## 2 TPM 0.637 0.0398 16.0 2.75e-28
# Unnesting to get everything back into a dataframe is very straightforward
tidy_counts_nest %>%
unnest(my_tidy_model)
## # A tibble: 8 x 8
## # Groups: Sample [4]
## Sample data my_model term estimate std.error statistic p.value
## <chr> <list<df[,10]>> <list> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 CD34_1 [94 × 10] <lm> (Intercept) 3865. 1101. 3.51 6.94e- 4
## 2 CD34_1 [94 × 10] <lm> TPM 0.637 0.0398 16.0 2.75e-28
## 3 ORTHO_1 [94 × 10] <lm> (Intercept) 1522. 784. 1.94 5.53e- 2
## 4 ORTHO_1 [94 × 10] <lm> TPM 0.857 0.0271 31.6 3.83e-51
## 5 CD34_2 [94 × 10] <lm> (Intercept) 4083. 1085. 3.76 2.94e- 4
## 6 CD34_2 [94 × 10] <lm> TPM 0.616 0.0378 16.3 7.03e-29
## 7 ORTHO_2 [94 × 10] <lm> (Intercept) 1787. 937. 1.91 5.96e- 2
## 8 ORTHO_2 [94 × 10] <lm> TPM 0.832 0.0333 25.0 8.45e-43
# Unnesting can be done sequentially to keep adding to master dataframe
tidy_counts_nest %>%
unnest(my_tidy_model) %>%
unnest(data)
## # A tibble: 752 x 17
## # Groups: Sample [4]
## Sample ENTREZ CellType Rep counts count_total CPM SYMBOL CHR LENGTH TPM my_model term
## <chr> <chr> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <dbl> <list> <chr>
## 1 CD34_1 350 CD34 1 204 307 1.36e3 APOH chr17 1201 3.07e3 <lm> (Int…
## 2 CD34_1 351 CD34 1 15586 26580 1.04e5 APP chr21 4480 6.29e4 <lm> (Int…
## 3 CD34_1 353 CD34 1 842 2471 5.62e3 APRT chr16 807 1.88e4 <lm> (Int…
## 4 CD34_1 355 CD34 1 123 569 8.21e2 FAS chr10 6691 3.32e2 <lm> (Int…
## 5 CD34_1 356 CD34 1 1 2 6.68e0 FASLG chr1 1859 9.72e0 <lm> (Int…
## 6 CD34_1 357 CD34 1 380 560 2.54e3 SHROO… chrX 8206 8.37e2 <lm> (Int…
## 7 CD34_1 358 CD34 1 572 7445 3.82e3 AQP1 chr7 3786 2.73e3 <lm> (Int…
## 8 CD34_1 359 CD34 1 0 13 0. AQP2 chr12 4179 0. <lm> (Int…
## 9 CD34_1 360 CD34 1 320 1982 2.14e3 AQP3 chr9 2950 1.96e3 <lm> (Int…
## 10 CD34_1 361 CD34 1 0 1 0. AQP4 chr18 5217 0. <lm> (Int…
## # … with 742 more rows, and 4 more variables: estimate <dbl>, std.error <dbl>, statistic <dbl>,
## # p.value <dbl>
If the data you are working with involves characters from data entry often there will be errors i.e. clinical study metadata or a hand-typed list of genes of interest. Tidying data also means fixing these problems. stringr helps make this easy.
Though stringr is pretty comprehensive and covers most of what you will need, there is a sister package called stringi with even more functionality.
Many overlapping functions with base for combining, subsetting, converting and finding strings
brc <- c("Tom", "Ji-Dung", "Matt")
# Extract substrings from a range. Here the 1st to 3rd character
brc %>% str_sub(1, 3)
## [1] "Tom" "Ji-" "Mat"
## [1] "o" "i-Dun" "at"
# Assign values back to substrings. Here the 2nd to 2nd to last character is replaced with X.
str_sub(brc, 2, -2) <- 'X'
brc
## [1] "TXm" "JXg" "MXt"
## [1] "Tom" "Ji -Dung" "Matt"
# Can add whitespace to strings to get consistent length. Here all are 10 characters
str_pad(brc2, width=10, side='left')
## [1] " Tom" " Ji -Dung" " Matt"
# Lets reuse our counts tibble. pull from dplyr can be used to grab a tibble
# column and make it into a vector
tidy_counts_expressed_norm %>%
pull(SYMBOL) %>%
head()
## [1] "APOH" "APOH" "APOH" "APOH" "APP" "APP"
# Here we pull our gene symbols from our tibble into a vector, and then convert
# them into title style capitalization
tidy_counts_expressed_norm %>%
pull(SYMBOL) %>%
str_to_title() %>%
head()
## [1] "Apoh" "Apoh" "Apoh" "Apoh" "App" "App"
# String manipulation functions can be used on tibbles using mutate. Here we convert
# gene symbols to title style capitalization
tidy_counts_expressed_norm %>%
mutate(SYMBOL = str_to_title(SYMBOL))
## # A tibble: 376 x 11
## # Groups: Sample [4]
## ENTREZ Sample CellType Rep counts count_total CPM SYMBOL CHR LENGTH TPM
## <chr> <chr> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <dbl>
## 1 350 CD34_1 CD34 1 204 307 1362. Apoh chr17 1201 3069.
## 2 350 ORTHO_1 ORTHO 1 0 307 0 Apoh chr17 1201 0
## 3 350 CD34_2 CD34 2 103 307 975. Apoh chr17 1201 2027.
## 4 350 ORTHO_2 ORTHO 2 0 307 0 Apoh chr17 1201 0
## 5 351 CD34_1 CD34 1 15586 26580 104068. App chr21 4480 62851.
## 6 351 ORTHO_1 ORTHO 1 479 26580 5825. App chr21 4480 3333.
## 7 351 CD34_2 CD34 2 10476 26580 99125. App chr21 4480 55281.
## 8 351 ORTHO_2 ORTHO 2 39 26580 1185. App chr21 4480 703.
## 9 353 CD34_1 CD34 1 842 2471 5622. Aprt chr16 807 18849.
## 10 353 ORTHO_1 ORTHO 1 355 2471 4317. Aprt chr16 807 13711.
## # … with 366 more rows
# Here we convert chromosome annotation to capitals
tidy_counts_expressed_norm %>%
mutate(CHR = str_to_upper(CHR))
## # A tibble: 376 x 11
## # Groups: Sample [4]
## ENTREZ Sample CellType Rep counts count_total CPM SYMBOL CHR LENGTH TPM
## <chr> <chr> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <dbl>
## 1 350 CD34_1 CD34 1 204 307 1362. APOH CHR17 1201 3069.
## 2 350 ORTHO_1 ORTHO 1 0 307 0 APOH CHR17 1201 0
## 3 350 CD34_2 CD34 2 103 307 975. APOH CHR17 1201 2027.
## 4 350 ORTHO_2 ORTHO 2 0 307 0 APOH CHR17 1201 0
## 5 351 CD34_1 CD34 1 15586 26580 104068. APP CHR21 4480 62851.
## 6 351 ORTHO_1 ORTHO 1 479 26580 5825. APP CHR21 4480 3333.
## 7 351 CD34_2 CD34 2 10476 26580 99125. APP CHR21 4480 55281.
## 8 351 ORTHO_2 ORTHO 2 39 26580 1185. APP CHR21 4480 703.
## 9 353 CD34_1 CD34 1 842 2471 5622. APRT CHR16 807 18849.
## 10 353 ORTHO_1 ORTHO 1 355 2471 4317. APRT CHR16 807 13711.
## # … with 366 more rows
# Find patterns in different ways
# Detect gives a T/F whether the pattern 'salmon' is present in vector
df1 %>%
pull(common_name) %>%
str_detect('salmon')
## [1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [17] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [33] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [65] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [81] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [97] TRUE
# Subset returns the match if the pattern 'salmon' is present in vector
df1 %>%
dplyr::pull(common_name) %>%
str_subset('salmon')
## [1] "Chinook salmon" "Sockeye salmon" "Sockeye salmon" "Chinook salmon" "Sockeye salmon"
## [6] "Chinook salmon" "Chinook salmon" "Sockeye salmon" "Chinook salmon" "Chinook salmon"
## [11] "Sockeye salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [16] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Coho salmon"
## [21] "Coho salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [26] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Sockeye salmon" "Sockeye salmon"
## [31] "Sockeye salmon" "Sockeye salmon" "Sockeye salmon" "Chinook salmon" "Chinook salmon"
## [36] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [41] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Sockeye salmon" "Chinook salmon"
## [46] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [51] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [56] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
# Ends is similar to detect as it gives gives a T/F whether the pattern 'salmon'
# is present in vector, but the pattern has to be at the end.
df1 %>%
dplyr::pull(common_name) %>%
str_ends('salmon')
## [1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [17] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [33] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [65] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [81] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [97] TRUE
## # A tibble: 59 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3
## 2 35035 Sockeye salmon juvenile 121 NA
## 3 35036 Sockeye salmon juvenile 112 NA
## 4 35033 Chinook salmon mixed age juvenile 444 62.1
## 5 35034 Sockeye salmon juvenile 139 NA
## 6 35142 Chinook salmon yearling 149 66.5
## 7 35143 Chinook salmon yearling 204 80.9
## 8 35144 Sockeye salmon juvenile 140 NA
## 9 35145 Chinook salmon yearling 130 23.4
## 10 35146 Chinook salmon mixed age juvenile 422 101.
## # … with 49 more rows
#Count gives you the total number of times your pattern appears in each chracter in the vector
df1 %>%
dplyr::pull(common_name) %>%
str_count('salmon')
## [1] 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
## [49] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [97] 1
## [1] 3 2 2 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 2 3 3 2 0 0 0 0 0 0 3 3 3 3 3 3
## [49] 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 0 3 0 0 3 3 3 3 3 3 3 3 3 2 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [97] 3
## [1] "Chinook salmon" "Sockeye salmon" "Sockeye salmon" "Steelhead trout" "Steelhead trout"
## [6] "Chinook salmon" "Sockeye salmon" "Steelhead trout" "Steelhead trout" "Steelhead trout"
## [11] "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout"
## [16] "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout"
## [21] "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout"
## [26] "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout"
## [31] "Chinook salmon" "Chinook salmon" "Sockeye salmon" "Chinook salmon" "Chinook salmon"
## [36] "Sockeye salmon" "Steelhead trout" "Steelhead trout" "Steelhead trout" "Steelhead trout"
## [41] "Steelhead trout" "Steelhead trout" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [46] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [51] "Coho salmon" "Coho salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [56] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Sockeye salmon"
## [61] "Sockeye salmon" "Sockeye salmon" "Sockeye salmon" "Sockeye salmon" "Steelhead trout"
## [66] "Chinook salmon" "Steelhead trout" "Steelhead trout" "Chinook salmon" "Chinook salmon"
## [71] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [76] "Chinook salmon" "Chinook salmon" "Sockeye salmon" "Steelhead trout" "Steelhead trout"
## [81] "Steelhead trout" "Steelhead trout" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [86] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [91] "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon" "Chinook salmon"
## [96] "Chinook salmon" "Chinook salmon"
## # A tibble: 97 x 5
## salmon_id common_name age_classbylength length_mm IGF1_ng_ml
## <dbl> <chr> <chr> <dbl> <dbl>
## 1 35032 Chinook salmon yearling 147 41.3
## 2 35035 Sockeye salmon juvenile 121 NA
## 3 35036 Sockeye salmon juvenile 112 NA
## 4 35037 Steelhead trout juvenile 220 42.7
## 5 35038 Steelhead trout juvenile 152 NA
## 6 35033 Chinook salmon mixed age juvenile 444 62.1
## 7 35034 Sockeye salmon juvenile 139 NA
## 8 35048 Steelhead trout juvenile 288 24.2
## 9 35049 Steelhead trout juvenile 190 NA
## 10 35050 Steelhead trout juvenile 283 63.5
## # … with 87 more rows
Factors are a data type that R uses to handle fixed categorical variables that have a known set of possible values.
Factors are ordered, allowing hierachy to be preserved in relatively simple vectors.
[This is base]
# Vectors are easy to turn into factors with factor()
tidy_counts_expressed_norm_samples <- tidy_counts_expressed_norm %>%
pull(Sample) %>%
factor()
tidy_counts_expressed_norm_samples %>% head(n=10)
## [1] CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1
## Levels: CD34_1 CD34_2 ORTHO_1 ORTHO_2
# Can also modify the data type of a tibble column with as_facotr, in an approach we have used before.
tidy_counts_expressed_norm %>%
ungroup() %>%
mutate_at(vars(Sample), as_factor)
## # A tibble: 376 x 11
## ENTREZ Sample CellType Rep counts count_total CPM SYMBOL CHR LENGTH TPM
## <chr> <fct> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <dbl>
## 1 350 CD34_1 CD34 1 204 307 1362. APOH chr17 1201 3069.
## 2 350 ORTHO_1 ORTHO 1 0 307 0 APOH chr17 1201 0
## 3 350 CD34_2 CD34 2 103 307 975. APOH chr17 1201 2027.
## 4 350 ORTHO_2 ORTHO 2 0 307 0 APOH chr17 1201 0
## 5 351 CD34_1 CD34 1 15586 26580 104068. APP chr21 4480 62851.
## 6 351 ORTHO_1 ORTHO 1 479 26580 5825. APP chr21 4480 3333.
## 7 351 CD34_2 CD34 2 10476 26580 99125. APP chr21 4480 55281.
## 8 351 ORTHO_2 ORTHO 2 39 26580 1185. APP chr21 4480 703.
## 9 353 CD34_1 CD34 1 842 2471 5622. APRT chr16 807 18849.
## 10 353 ORTHO_1 ORTHO 1 355 2471 4317. APRT chr16 807 13711.
## # … with 366 more rows
tidy_counts_expressed_norm %>%
ungroup() %>%
mutate_at(vars(Sample), as_factor) %>%
pull(Sample) %>% head(n=10)
## [1] CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1
## Levels: CD34_1 ORTHO_1 CD34_2 ORTHO_2
# When you factorize you can use a vector to determine the order
my_levels1<-c('ORTHO_1','ORTHO_2','CD34_1','CD34_2')
tidy_counts_expressed_norm %>%
pull(Sample) %>%
factor(levels = my_levels1 ) %>% head(n=10)
## [1] CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1
## Levels: ORTHO_1 ORTHO_2 CD34_1 CD34_2
# When you factorize anything not in the given levels is turned to NA
my_levels2<-c('ORTHO_1','CD34_1')
tidy_counts_expressed_norm %>%
pull(Sample) %>%
factor(levels = my_levels2 ) %>% head(n=10)
## [1] CD34_1 ORTHO_1 <NA> <NA> CD34_1 ORTHO_1 <NA> <NA> CD34_1 ORTHO_1
## Levels: ORTHO_1 CD34_1
# Its straightforward to grab the levels from the factor
tidy_counts_expressed_norm_samples %>%
levels()
## [1] "CD34_1" "CD34_2" "ORTHO_1" "ORTHO_2"
# fct_relevel - reorder manually
tidy_counts_expressed_norm %>%
ungroup() %>%
mutate_at(vars(Sample), as_factor) %>%
mutate(Sample = fct_relevel(Sample, my_levels1)) %>%
pull(Sample) %>% head(n=10)
## [1] CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1
## Levels: ORTHO_1 ORTHO_2 CD34_1 CD34_2
# fct_relevel - reorder manually
tidy_counts_expressed_norm %>%
ungroup() %>%
mutate_at(vars(Sample), as_factor) %>%
mutate(Sample = fct_relevel(Sample, my_levels2)) %>%
pull(Sample) %>% head(n=10)
## [1] CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1
## Levels: ORTHO_1 CD34_1 CD34_2 ORTHO_2
# fct_reorder - reorder based on the data. Here we are ordering based
# on mean counts for each sample.
tidy_counts_expressed_norm %>%
ungroup() %>%
mutate_at(vars(Sample), as_factor) %>%
mutate(Sample = fct_reorder(Sample, counts, mean)) %>%
pull(Sample) %>% head(n=10)
## [1] CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1 CD34_2 ORTHO_2 CD34_1 ORTHO_1
## Levels: ORTHO_2 ORTHO_1 CD34_2 CD34_1
p <- tidy_counts_expressed_norm %>%
ungroup() %>%
mutate_at(vars(Sample), as_factor) %>%
mutate(Sample=fct_relevel(Sample, my_levels1)) %>%
group_by(Sample) %>%
summarize(mean_count=mean(counts)) %>%
ggplot(aes(x=Sample, y= mean_count)) +
geom_bar(stat = "identity") +
theme(axis.text.x = element_text(angle = 90))
## [1] "yearling" "juvenile" "juvenile" "juvenile"
## [5] "juvenile" "mixed age juvenile" "juvenile" "juvenile"
## [9] "juvenile" "juvenile" "juvenile" "juvenile"
## [13] "juvenile" "juvenile" "juvenile" "juvenile"
## [17] "juvenile" "juvenile" "juvenile" "juvenile"
## [21] "juvenile" "juvenile" "juvenile" "juvenile"
## [25] "juvenile" "juvenile" "juvenile" "juvenile"
## [29] "juvenile" "juvenile" "yearling" "yearling"
## [33] "juvenile" "yearling" "mixed age juvenile" "juvenile"
## [37] "juvenile" "juvenile" "juvenile" "juvenile"
## [41] "juvenile" "juvenile" "yearling" "yearling"
## [45] "yearling" "yearling" "yearling" "yearling"
## [49] "yearling" "yearling" "yearling" "yearling"
## [53] "yearling" "yearling" "yearling" "yearling"
## [57] "yearling" "yearling" "subyearling" "juvenile"
## [61] "juvenile" "juvenile" "juvenile" "juvenile"
## [65] "juvenile" "yearling" "juvenile" "juvenile"
## [69] "mixed age juvenile" "yearling" "yearling" "yearling"
## [73] "yearling" "yearling" "yearling" "yearling"
## [77] "yearling" "juvenile" "juvenile" "juvenile"
## [81] "juvenile" "juvenile" "yearling" "yearling"
## [85] "yearling" "yearling" "yearling" "yearling"
## [89] "yearling" "yearling" "yearling" "yearling"
## [93] "yearling" "yearling" "yearling" "yearling"
## [97] "yearling"
# Recoding levels to give them a new name
df1 %>%
mutate_at(vars(age_classbylength), as_factor) %>%
mutate(age_classbylength=fct_recode(age_classbylength, "mixed juvenile" = "mixed age juvenile")) %>%
pull(age_classbylength)
## [1] yearling juvenile juvenile juvenile juvenile mixed juvenile
## [7] juvenile juvenile juvenile juvenile juvenile juvenile
## [13] juvenile juvenile juvenile juvenile juvenile juvenile
## [19] juvenile juvenile juvenile juvenile juvenile juvenile
## [25] juvenile juvenile juvenile juvenile juvenile juvenile
## [31] yearling yearling juvenile yearling mixed juvenile juvenile
## [37] juvenile juvenile juvenile juvenile juvenile juvenile
## [43] yearling yearling yearling yearling yearling yearling
## [49] yearling yearling yearling yearling yearling yearling
## [55] yearling yearling yearling yearling subyearling juvenile
## [61] juvenile juvenile juvenile juvenile juvenile yearling
## [67] juvenile juvenile mixed juvenile yearling yearling yearling
## [73] yearling yearling yearling yearling yearling juvenile
## [79] juvenile juvenile juvenile juvenile yearling yearling
## [85] yearling yearling yearling yearling yearling yearling
## [91] yearling yearling yearling yearling yearling yearling
## [97] yearling
## Levels: yearling juvenile mixed juvenile subyearling
# Recoding levels to change to add one factor to another factor
df1 %>%
mutate_at(vars(age_classbylength), as_factor) %>%
mutate(age_classbylength=fct_recode(age_classbylength, "juvenile" = "mixed age juvenile")) %>%
pull(age_classbylength)
## [1] yearling juvenile juvenile juvenile juvenile juvenile juvenile juvenile
## [9] juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile
## [17] juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile
## [25] juvenile juvenile juvenile juvenile juvenile juvenile yearling yearling
## [33] juvenile yearling juvenile juvenile juvenile juvenile juvenile juvenile
## [41] juvenile juvenile yearling yearling yearling yearling yearling yearling
## [49] yearling yearling yearling yearling yearling yearling yearling yearling
## [57] yearling yearling subyearling juvenile juvenile juvenile juvenile juvenile
## [65] juvenile yearling juvenile juvenile juvenile yearling yearling yearling
## [73] yearling yearling yearling yearling yearling juvenile juvenile juvenile
## [81] juvenile juvenile yearling yearling yearling yearling yearling yearling
## [89] yearling yearling yearling yearling yearling yearling yearling yearling
## [97] yearling
## Levels: yearling juvenile subyearling
# fct_count - Count up the number of each
df1 %>%
mutate_at(vars(age_classbylength), as_factor) %>%
pull(age_classbylength) %>%
fct_count()
## # A tibble: 4 x 2
## f n
## <fct> <int>
## 1 yearling 44
## 2 juvenile 49
## 3 mixed age juvenile 3
## 4 subyearling 1
# fct_infreq - mask rare factors by giving them a general summary term i.e. Other
df1 %>%
mutate_at(vars(age_classbylength), as_factor) %>%
mutate(age_classbylength=fct_lump(age_classbylength, n=2)) %>%
pull(age_classbylength)
## [1] yearling juvenile juvenile juvenile juvenile Other juvenile juvenile juvenile juvenile
## [11] juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile
## [21] juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile juvenile
## [31] yearling yearling juvenile yearling Other juvenile juvenile juvenile juvenile juvenile
## [41] juvenile juvenile yearling yearling yearling yearling yearling yearling yearling yearling
## [51] yearling yearling yearling yearling yearling yearling yearling yearling Other juvenile
## [61] juvenile juvenile juvenile juvenile juvenile yearling juvenile juvenile Other yearling
## [71] yearling yearling yearling yearling yearling yearling yearling juvenile juvenile juvenile
## [81] juvenile juvenile yearling yearling yearling yearling yearling yearling yearling yearling
## [91] yearling yearling yearling yearling yearling yearling yearling
## Levels: yearling juvenile Other
df1 %>%
mutate_at(vars(age_classbylength), as_factor) %>%
mutate(age_classbylength=fct_lump(age_classbylength, n=2)) %>%
pull(age_classbylength) %>%
fct_count()
## # A tibble: 3 x 2
## f n
## <fct> <int>
## 1 yearling 44
## 2 juvenile 49
## 3 Other 4
# Normally facotrs do not like to be combined as levels in one may not exist in the other.
# Factor concatenation with fct_c help get around this.
A <- factor(c('Tom','Ji-Dung'))
B <- factor('Matt')
fct_c(A, B)
## [1] Tom Ji-Dung Matt
## Levels: Ji-Dung Tom Matt
We have covered the core packages in the tidyverse
Hadley Wickham (Chief Scientist at RStudio) is the driving force behind the tidyverse.
Hadley wrote a paper about why he thinks tidy data is best: www.jstatsoft.org/v59/i10/paper.
There is a lot of support for all things tidy at: https://www.tidyverse.org/
(This includes really great cheat sheets for each tool)
plyranges: dplyr equivalent for working with ranges i.e. Granges
profileplyr: graphical and heatmap outputs for genomics
readxl: This package is very useful when you want to import Excel sheets in R
googledrive: Interact with your googledrive through R
lubridate and hms: Allow managin of calendar and time formats
magrittr: piping tools
broom: helps tidy up standard base function i.e. lm or t.test
tidymodels: A collection of tools for preparing for and validating model functions
ggplot
https://rockefelleruniversity.github.io/Plotting_In_R/
R for Data Science text book
https://r4ds.had.co.nz/
Data Science with R text book
http://garrettgman.github.io/
Biounformatics Shared Training - Intermediate R course
https://bioinformatics-core-shared-training.github.io/r-intermediate/