In todays session we will work with some of the RNAseq data of adult mouse tissues from Bing Ren’s lab, Liver and Heart.
More information on liver data can be found here
More information on heart data can be found here
More information on Kidney data can be found here
Precounted RNAseq reads in genes for these tissues can be found as an R data object in data/gC_TissueFull.RData.
We have run the DEXseq workflow to compare Heart and Liver. Load the DEXseqResults object called dxr1 (found in data/dxr_HeartVsLiver.RData) and make a plot of the differential splicing for the Atp2a2 gene.
library(DEXSeq)
load("data/dxr_HeartVsLiver.RData")
dxr1DF <- as.data.frame(dxr1)
dxr1DF <- dxr1DF[order(dxr1DF$pvalue),]
library(org.Mm.eg.db)
eToSym <- AnnotationDbi::select(org.Mm.eg.db,
keys = unique(dxr1DF[,1]),
keytype = "ENTREZID",
columns="SYMBOL")
## 'select()' returned 1:1 mapping between keys and columns
annotatedRes <- merge(eToSym,dxr1DF,
by.x=1,
by.y=1,all=FALSE)
annotatedRes <- annotatedRes[order(annotatedRes$pvalue),]
annotatedRes[1:3,]
## ENTREZID SYMBOL featureID exonBaseMean dispersion stat pvalue
## 10613 22003 Tpm1 E001 117.4021 0.009979611 790.0469 7.871657e-174
## 3297 12870 Cp E026 72.2033 0.003310883 715.7727 1.111406e-157
## 2345 11938 Atp2a2 E002 651.1539 0.014388628 389.7594 9.338217e-87
## padj Heart Liver log2fold_Liver_Heart genomicData.seqnames
## 10613 1.522772e-169 1.030876 3.134205 7.127092 chr9
## 3297 1.075007e-153 2.429502 1.079348 -4.605220 chr3
## 2345 6.021594e-83 2.146096 3.454840 4.357391 chr5
## genomicData.start genomicData.end genomicData.width genomicData.strand
## 10613 67022593 67023441 849 -
## 3297 20008540 20009750 1211 +
## 2345 122455893 122457302 1410 -
## countData.Sorted_Heart_1.bam countData.Sorted_Heart_2.bam
## 10613 174 139
## 3297 156 112
## 2345 985 829
## countData.Sorted_Liver_1.bam countData.Sorted_Liver_2.bam transcripts
## 10613 80 97 uc009qfo....
## 3297 25 21 uc008osc.2
## 2345 505 403 uc008zlj.2
Load the RangedSummarizedExperiment object called tissueExonCounts (found in data/RSE_HeartAndLiver.RData). Perform a differential exon analysis. Make a plot of the gene containing the most significantly differentially used exon.
load(file="data/RSE_HeartAndLiver.RData")
ddxTissue <- DEXSeqDataSetFromSE(tissueExonCounts,
design= ~ sample + exon + tissue:exon)
## converting counts to integer mode
## -- note: fitType='parametric', but the dispersion trend was not well captured by the
## function: y = a/x + b, and a local regression fit was automatically substituted.
## specify fitType='local' or 'mean' to avoid this message next time.
ddxTissue <- ddxTissue[order(ddxTissue$pvalue),]
plotDEXSeq(ddxTissue,16561,fitExpToVar = "tissue",displayTranscripts = TRUE)