params <- list(isSlides = "no") ## ----setup_varManS3, include=FALSE-------------------------------------------- knitr::opts_chunk$set(echo = TRUE,cache = TRUE,cache.lazy = FALSE,message = FALSE,warning = FALSE, tidy = T) # AsSlides <- TRUE # suppressPackageStartupMessages(library(VariantAnnotation)) suppressPackageStartupMessages(library(DT)) suppressPackageStartupMessages(library(BSgenome.Hsapiens.UCSC.hg19)) suppressPackageStartupMessages(library(TxDb.Hsapiens.UCSC.hg19.knownGene)) suppressPackageStartupMessages(library(SNPlocs.Hsapiens.dbSNP144.GRCh37)) suppressPackageStartupMessages(library(ggplot2)) suppressPackageStartupMessages(library(GenomicFeatures)) suppressPackageStartupMessages(library(maftools)) suppressPackageStartupMessages(library(NMF)) ## ---- results='asis',include=TRUE,echo=FALSE---------------------------------- if(params$isSlides != "yes"){ cat("# Genomic Variants (part 3) --- " ) } ## ---- results='asis',include=TRUE,echo=FALSE---------------------------------- if(params$isSlides == "yes"){ cat("class: inverse, center, middle # Working with MAF files

--- " ) }else{ cat("# Working with MAF files --- " ) } ## ----mult_mafIntro_advan------------------------------------------------------ laml_tab <- read.delim("data/tcga_laml.maf",sep="\t") laml_tab[1:2,] ## ----mult_samInfo_advan,fig.align="center"------------------------------------ tbl <- table(laml_tab$Tumor_Sample_Barcode) hist(tbl,breaks = 10, xlab = "Mutations") ## ----mafTools_intro,echo=FALSE,out.width = "50%",fig.align="center"----------- knitr::include_graphics("imgs/vcfMan_fig7r.png") ## ----mult_mafT_advan---------------------------------------------------------- library(maftools) laml <- read.maf("data/tcga_laml.maf.gz") class(laml) ## ----mult_samSum_advan-------------------------------------------------------- sample_sum <- getSampleSummary(laml) sample_sum[1:2,] ## ----mult_samSumPlot_advan1--------------------------------------------------- var_to <- sample_sum$total names(var_to) <- sample_sum$Tumor_Sample_Barcode sample_sum <- dplyr::select(sample_sum,-total) melt_dat <- reshape2::melt(sample_sum, id="Tumor_Sample_Barcode") melt_dat[1:3,] ## ----mult_samSumPlot_advan15-------------------------------------------------- melt_dat$totalVar <- var_to[match(melt_dat$Tumor_Sample_Barcode,names(var_to))] melt_dat$prop <- melt_dat$value / melt_dat$totalVar head(melt_dat) ## ----mult_samSumPlot_advan2,echo=TRUE,eval=FALSE,tidy=FALSE------------------- ## ggplot(melt_dat,aes(x=Tumor_Sample_Barcode,y=value,fill=variable))+ ## geom_bar(stat='identity',position = 'stack')+ ## labs(x="",y="Mutations",fill="")+ ## theme(axis.text.x=element_blank()) ## ----mult_samSumPlot_advan3,echo=FALSE,eval=TRUE,tidy=TRUE,fig.align="center"---- ggplot(melt_dat,aes(x=Tumor_Sample_Barcode,y=value,fill=variable))+ geom_bar(stat='identity',position = 'stack')+ labs(x="",y="Mutations",fill="")+ theme(axis.text.x=element_blank()) ## ----mult_samSumPlotPres_advan4,echo=TRUE,eval=FALSE,tidy=FALSE--------------- ## ggplot(melt_dat,aes(x=Tumor_Sample_Barcode,y=prop,fill=variable))+ ## geom_bar(stat='identity',position = 'stack')+ ## labs(x="",y="Proportion",fill="")+ ## theme(axis.text.x=element_blank()) ## ----mult_samSumPlotPres_advan5,echo=FALSE,eval=TRUE,tidy=FALSE,fig.align="center"---- ggplot(melt_dat,aes(x=Tumor_Sample_Barcode,y=prop,fill=variable))+ geom_bar(stat='identity',position = 'stack')+ labs(x="",y="Proportion",fill="")+ theme(axis.text.x=element_blank()) ## ----mult_geneSum_advan------------------------------------------------------- gene_sum <- getGeneSummary(laml) gene_sum[1:2,] ## ---- results='asis',include=TRUE,echo=FALSE---------------------------------- if(params$isSlides == "yes"){ cat("class: inverse, center, middle # Functional analysis of mutations

--- " ) }else{ cat("# Functional analysis of mutations --- " ) } ## ----mult_lolli_advan_eval1,echo=TRUE,eval=FALSE,tidy=FALSE------------------- ## lollipopPlot(maf = laml, ## gene = 'NRAS', ## AACol = 'Protein_Change', ## showMutationRate = TRUE, ## labelPos = "all") ## ----mult_lolli_advan_eval2,echo=FALSE,eval=TRUE,tidy=FALSE,fig.align="center"---- lollipopPlot(maf = laml, gene = 'NRAS', AACol = 'Protein_Change', showMutationRate = TRUE,labelPos = "all") ## ----mult_oncoplot_advan,fig.align="center"----------------------------------- oncoplot(maf=laml,top = 5) ## ----mult_pathPlotWF_advan1,eval=TRUE,echo=TRUE,tidy=FALSE,fig.show="hide"---- OncogenicPathways(maf = laml) ## ----mult_pathPlotWF_advan2,eval=TRUE,echo=FALSE,tidy=FALSE,results="hide",fig.align="center"---- OncogenicPathways(maf = laml) ## ----mult_pathPlotWF_advan3,echo=TRUE,eval=TRUE,tidy=FALSE,fig.align="center"---- PlotOncogenicPathways(maf = laml, pathways = "RTK-RAS") ## ---- results='asis',include=TRUE,echo=FALSE---------------------------------- if(params$isSlides == "yes"){ cat("class: inverse, center, middle # Mutation Signatures

--- " ) }else{ cat("# Mutation Signatures --- " ) } ## ----mult_mutSig_TiTv_advan1,eval=FALSE,echo=TRUE,tidy=FALSE------------------ ## laml.titv = titv(maf = laml, plot = FALSE, useSyn = TRUE) ## plotTiTv(res = laml.titv) ## ----mult_mutSig_TiTv_advan2,eval=TRUE,echo=FALSE,tidy=FALSE,fig.align="center"---- laml.titv = titv(maf = laml, plot = FALSE, useSyn = TRUE) plotTiTv(res = laml.titv) ## ----mult_mutSig_triMut_advan,tidy=FALSE-------------------------------------- library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) laml.tnm = trinucleotideMatrix(maf = laml, prefix = 'chr', add = TRUE, ref_genome = "BSgenome.Hsapiens.UCSC.hg19") ## ----mult_mutSig_triMutPres_advan--------------------------------------------- dim(laml.tnm$nmf_matrix) laml.tnm$nmf_matrix[1,] ## ----mult_mutSig_triMutPat_advan1--------------------------------------------- tarSam_triNuc <- laml.tnm$nmf_matrix['TCGA-AB-3009',] tarSam_triNuc[1:2] ## ----mult_mutSig_triMutPat_advan2--------------------------------------------- yd <- data.frame(triNuc=names(tarSam_triNuc), count=tarSam_triNuc, stringsAsFactors = FALSE) yd$cat <- gsub("(.*)\\[(.*)\\](.*)","\\2",yd$triNuc) yd$num <- seq(1,length(yd$triNuc)) ## ----mult_mutSig_triMutPat_advan3,eval=FALSE,echo=TRUE,tidy=FALSE------------- ## ggplot(yd,aes(x=num,y=count,fill=cat))+ ## geom_bar(stat='identity')+ ## labs(x="",y="Counts",fill="")+ ## theme(axis.text.x=element_blank()) ## ----mult_mutSig_triMutPat_advan4,eval=TRUE,echo=FALSE,tidy=FALSE,fig.align="center"---- ggplot(yd,aes(x=num,y=count,fill=cat))+geom_bar(stat='identity')+ labs(x="",y="Counts",fill="")+theme(axis.text.x=element_blank()) ## ----mult_mutSig_sigEst_advan1,eval=FALSE,echo=TRUE,tidy=FALSE---------------- ## library('NMF') ## laml.sign <- estimateSignatures(mat = laml.tnm, ## nTry = 6, ## pConstant = 0.1, ## parallel = 1) ## ----mult_mutSig_sigEst_advan2,eval=TRUE,echo=FALSE,include=FALSE------------- library('NMF') laml.sign <- estimateSignatures(mat = laml.tnm, nTry = 6, pConstant = 0.1, parallel = 1) ## ----mult_mutSig_sigEst_advan3,eval=TRUE,echo=FALSE,include=TRUE,fig.align="center"---- plotCophenetic(laml.sign) ## ----mult_mutSig_sigExt_advan,tidy=FALSE-------------------------------------- laml.sig.ext <- extractSignatures(mat = laml.tnm, n = 3, pConstant = 0.1, parallel = 1) laml.sig.ext$signatures[1:5,] # use for mapping to mutational signature database ## ----mult_muSig_mapSig_advan,tidy=FALSE--------------------------------------- laml.og30.cosm = compareSignatures(nmfRes = laml.sig.ext, sig_db = "legacy") laml.og30.cosm$cosine_similarities[,1:5] ## ----mult_muSig_mapSigPres_advan,fig.align="center"--------------------------- pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE) ## ----mult_muSig_plotSigCOS_advan1,eval=FALSE,echo=TRUE,tidy=FALSE------------- ## plotSignatures(nmfRes = laml.sig.ext, ## title_size = 1.2, ## contributions = FALSE, ## show_title = TRUE, ## sig_db = 'legacy') ## ----mult_muSig_plotSigCOS_advan2,eval=TRUE,echo=FALSE,tidy=FALSE,fig.align="center"---- plotSignatures(nmfRes = laml.sig.ext, title_size = 1.2, contributions = FALSE, show_title = TRUE, sig_db = 'legacy') ## ----mult_muSig_mapSigSBS_advan1,fig.align="center"--------------------------- laml.sign.sbs = compareSignatures(nmfRes = laml.sig.ext, sig_db = "SBS") laml.sign.sbs$cosine_similarities[,1:5] ## ----mult_muSig_mapSigSBS_advan2,fig.align="center"--------------------------- pheatmap::pheatmap(mat = laml.sign.sbs$cosine_similarities, cluster_rows = FALSE) ## ----mult_muSig_plotSigSBS_advan1,eval=FALSE,echo=TRUE,tidy=FALSE------------- ## plotSignatures(nmfRes = laml.sig.ext, ## title_size = 1.2, ## contributions = FALSE, ## show_title = TRUE, ## sig_db = 'SBS') ## ----mult_muSig_plotSigSBS_advan2,eval=TRUE,echo=FALSE,tidy=FALSE,fig.align="center"---- plotSignatures(nmfRes = laml.sig.ext, title_size = 1.2, contributions = FALSE, show_title = TRUE, sig_db = 'SBS') ## ----mult_muSig_plotSigSAM_advan1,eval=FALSE,echo=TRUE,tidy=FALSE------------- ## plotSignatures(nmfRes = laml.sig.ext, ## title_size = 0.8, ## contributions = TRUE, ## show_title = TRUE) ## ----mult_muSig_plotSigSAM_advan2,eval=TRUE,echo=FALSE,tidy=FALSE,fig.align="center"---- plotSignatures(nmfRes = laml.sig.ext, title_size = 0.8, contributions = TRUE, show_title = TRUE) ## ----mult_muSig_enrich_advan1,eval=FALSE,echo=TRUE,tidy=FALSE----------------- ## laml.se = signatureEnrichment(maf = laml, ## sig_res = laml.sig.ext) ## ----mult_muSig_enrich_advan2,eval=TRUE,echo=FALSE,tidy=FALSE,fig.align="center",results=FALSE---- laml.se = signatureEnrichment(maf = laml, sig_res = laml.sig.ext) ## ----mult_muSig_enrichGene_advan---------------------------------------------- laml.se$groupwise_comparision[1:2,] ## ----mult_muSig_enrichGenePlot_advan1,fig.align="center",out.height="70%"----- plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05)